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Abstract

Background: Bacterial community play a key role in environmental and ecological processes in river ecosystems.
Rivers are used as receiving body for treated and untreated urban wastewaters that brings high loads of sewage
and excrement bacteria. However, little is known about the bacterial community structure and functional files in the
rivers around the eutrophic Chaohu Lake, the fifth largest freshwater lake in China, has been subjected to severe
eutrophication and cyanobacterial blooms over the past few decades. Therefore, understanding the taxonomic and
functional compositions of bacterial communities in the river will contribute to understanding aquatic microbial
ecology. The main aims were to (1) examine the structure of bacterial communities and functional profiles in this
system; (2) find the environmental factors of bacterial community variations.

Results: We studied 88 sites at rivers in the Chaohu Lake basin, and determined bacterial communities using
lllumina Miseq sequencing of the 16 S rRNA gene, and predicted functional profiles using PICRUSt2. A total of 3,
390,497 bacterial 16 S rRNA gene sequences were obtained, representing 17 phyla, and 424 genera; The dominant
phyla present in all samples were Bacteroidetes (1.4-82.50 %), followed by Proteobacteria (12.6-97.30 %),
Actinobacteria (0.1-17.20 %). Flavobacterium was the most numerous genera, and accounted for 0.12-80.34 % of
assigned 16 S reads, followed by Acinetobacter (0.33-49.28 %). Other dominant bacterial genera including Massilia
(0.06-25.40 %), Psychrobacter (0-36.23 %), Chryseobacterium (0.01-22.86 %), Brevundimonas (0.01-12.82 %),
Pseudomonas (0-59.73 %), Duganella (0.08-23.37 %), Unidentified Micrococcaceae (0-8.49 %). The functional profiles of
the bacterial populations indicated an relation with many human diseases, including infectious diseases. Overall
results, using the 3 diversity measures, coupled with heatmap and RDA showed that there were spatial variations in
the bacterial community composition at river sites, and Chemical oxygen demand (CODy,) and (NH4* )were the
dominant environmental drivers affecting the bacterial community variance.

Conclusions: The high proportion of the opportunistic pathogens (Acinetobacter, Massilia, Brevundimonas) indicated

that the discharge of sewage without adequate treatment into the rivers around Chaohu Lake. We propose that
these bacteria could be more effective bioindicators for long-term sewage monitoring in eutrophic lakes.
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Background

Rivers are the primary receiver of organic matter and
nutrients from terrestrial ecosystems, and play a key role
in biogeochemical cycles in aquatic ecosystems [1].
Although many studies emphasize the importance of
river ecosystem services, most river worldwide have suf-
fered serious deterioration, caused primarily by rapid
industrialization and urbanization. Therefore, investiga-
tion of the overall ecological condition of the river eco-
systems is of paramount importance.

In watersheds, lakes and their input rivers are highly
linked in multiple ways, yet microbial diversity in river is
less commonly studied than lake ecosystems [2]. As a
crucial constituent of the river ecosystem, microbes are
widely distributed in water column and are diverse in
terms of numbers of species. They play a key role in the
mineralization of organic matter, and biogeochemical
processes [3, 4]. Although many studies have focused on
bacterial community composition (BCC) in the water
body of lakes [5-10], BCC in the input rivers around
lakes has not been examined in as much detail. Futher-
more, the bacterioplankton assemblage composition in
lakes could be affected by the input of allochthonous
bacteria [11]. In addition, rivers are also often used as re-
ceiving body for treated and untreated urban wastewa-
ters [12], which brings high loads of sewage and
excrement bacteria [13]. These bacterial genera usually
include waterborne pathogens which are a danger to hu-
man health [14-16]. Nevertheless, the taxonomic and
functional compositions of bacterial communities, and
the influencing factors in the river around lakes have
been largely ignored and the investigations are crying
needed.

Our attention has been drawn to Chaohu Lake, the
fifth largest freshwater lake in China, which is located in
the downstream of the Yangtze River, which will serves
many social, economic, and ecological purposes in the
drainage basin [17, 18]. The western lake region receives
major inflows, including the Nanfei and Shiwuli rivers
(both have sewage outfalls), the Hangbu, and the Pai
river. These western rivers account for almost 60 % of
the total runoff volume contributed annually to the lake.
The eastern lake region connects to the Yuxi river, an
only outflowing river, which is the only channel connect-
ing the eastern region to the Yangtze River. However, in
the past decades, there has been increasing industrial
and agricultural pollution and other strong human activ-
ities, causing serious deterioration in water quality of the
lake, and increasing coverage and duration of cyanobac-
terial blooms [19]. Extensive research has been directed
to the causes and mechanisms of eutrophication in
Chaohu Lake [20]. However, no studies have character-
ized the bacterial community composition and func-
tional profiles in the rivers around Chaohu Lake, nor has
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community structure been correlated with environmen-
tal factors.

In this study, excepted for investigating the compos-
ition of the bacterial community in the rivers around
Chaohu Lake, we further studied which one is the envir-
onmental determinant of variations in the river bacterial
communities. This work could decipher the spatial dis-
tribution patterns of BCC and its functional profiles in
rivers around Chaohu Lake, and will be significant to
understand the microbial ecology of the rivers and asses-
sing ecological risk, as well as provide a scientific basis
for the ameliorating pollution of the freshwater lake.

Results

Environmental characterization

The means, and maximum and minimum values, for the
11 environmental parameters measured at the 88 sam-
pling sites in the rivers around the Chaohu Lake basin
are summarized in Table 1. During the sampling period,
the water temperature varies from 6 to 9 °C. Measure-
ments related to trophic status typically varied greatly
among sites. For example, TN concentration ranged
from 0.71 mg L™' at C45 to 18.80 mg L' at C25
(mean =4.00 mg L~ 1, TP concentration ranged from
0.03 mg L' at C45 to 3.00 mg L' at C25 (mean =
0.22 mg L~ 1 and CODy,, concentration ranged from
143 mg L™ at C81 to 16.71 mg L™ at C25 (mean =
5.02 mg L~ 1. Concentrations of TN, TP and CODyy,
and other nutrients in the water column showed high
levels of pollution in most of the rivers around Chaohu

Table 1 Mean, and maximum and minimum values, for 12
physicochemical parameters for the 88 sampling sites in the
rivers on 15 February 2018. Abbreviations are, Temp water
temperature, TN total nitrogen, DTN dissolved total nitrogen,
NH4" ammonium, NO,™ nitrite, NO;™ nitrate, TP total
phosphorus, DTP dissolved total phosphorus,

PO,* orthophosphate, CODy,, Chemical Oxygen Demand,
BA Bacterial abundance

Physicochemical parameters mean range
Temp (°Q) 5.80 2.10-12.64
pH 856 7.60-9.66
TN (mg L") 400 1.24-18.80
DTN (mg L™ 367 062-17.12
TP (mg L) 022 0.03-147
DTP (mg L™ 0.15 001-2.57
NH,* (mg L) 182 001-187
PO (mg L) 0.04 0-0.66
NO;™ (mg L™") 1.75 0.05-7.98
NO,” (mg L™ ") 005 0.01-0.50
CODwn, (Mg L7 502 143-16.71
BA (cells mL™") 155%10°  1.52x 10 —386x 10’
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Lake. All water samples had a pH greater than 7, with
the highest value of 9.66, indicating alkaline conditions
in the study area (Table 1).

Patterns of bacterial abundance and diversity

Bacterial abundance varied greatly among the 88 sites in
the rivers around the Chaohu Lake basin (Fig. 1). The
bacterial abundance was lowest at site C64 with an
abundance of only 1.52 x 10* cells mL™", and highest in
site C25 with an abundance of 3.86 x 107 cells mL™%;
across all sites the mean abundance was 1.55 x 10° cells

! (Table 1; Fig. 1).

Based on the identity level of 97 %, the 3,390,497 high
quality sequence reads were classified into different
OTUs after quality control. Among the 3,390,497 se-
quence reads, 125901 OTUs were classified at the
phylum level (Fig. 2). Rarefaction curves suggesting that
the sequencing effort was sufficient to capture the com-
munity diversity (Fig. S1).

The bacterial a-diversity patterns, including the Rich-
ness, Shannon, and Pielou indexes were distinct between
the 88 sites along the rivers (Fig. 2). The Shannon index
ranged from 3.471 to 5.860, and was highest in sample C6.
The Pielou index ranged from 0.02515 to 0.1378, and was
highest in sample C6. The Richness index ranged from
79.74 to 308.30, with the highest value in sample C70.

We investigated the B-diversity patterns of the bacter-
ial communities by employing non-metric multidimen-
sional scaling (NMDS). Notably, these groups were
scattered on the NMDS plot, suggesting lower similarity
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of bacterial community compositions among the 88 sites
(Fig. 3). This result was also supported by the hierarch-
ical cluster analysis, indicateing that the 88 samples were
separated by site condition (Fig. S2).

Phylogenetic composition of bacterial community
To visualize the bacterial community compositions in
the rivers of the Chaohu Lake basin, the profiles of all
taxa at all 88 sites were plotted, and are show in Fig. 4
(phylum level) and Fig. 5 (genus level). A total of 17 dif-
ferent phyla were observed, and the dominant bacterial
phyla (those with =5 % relative abundance in any sam-
ple, average values of 88 sites) belonged to Bacteroidetes
(51.6 %, average relative abundance), Proteobacteria
(38.3%), and Actinobacteria (5.5%), which together
accounted for 954 % of the bacterial sequences; the
other phyla accounted for a low fraction of the average
relative abundance (4.6 %). Among Proteobacteria, the
most abundance class was Gammaproteobacteria, com-
prising 15.8 % of the total sequences, followed by Beta-
proteobacteria (13.5 %), and Alphaproteobacteria (9.0 %).
All reads were classified into 424 genus-level taxo-
nomic groups, and 20 of them accounted for 80.89 % of
all reads (Fig. 5). Among the 20 abundant genera, there
were two genera of Bacteroidetes (48.3 %), followed by
six Proteobacteria genera comprising a- (one genus), -
(two genera) and y- subdivisions (three genera), and one
genus of Actinobacteria. Deep taxonomic analyses
showed that prominent genera (those with >1.4 % rela-
tive abundance in any sample, average values of 88 sites)
consisted of Flavobacterium (45.6 %, average relative
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Fig. 2 Spatial distribution of the OTUs and bacterial a-diversity, represented by Shannon, Richness and Pielou indices, of the 88 sites in the rivers
around Chaohu Lake

abundance), Acinetobacter (8.8 %), Massilia (4.6 %), Psy-
chrobacter (3.2 %), Chryseobacterium (2.7 %), Brevundi-
monas (2.6 %), Pseudomonas (2.3 %), Duganella (2.1 %),
and unidentified Micrococcaceae (1.4 %), which together
accounted for 73.3 % of the bacterial sequences; other
genera accounted for only 26.7 %. Heatmaps of the 50
most abundant bacterial genera based on the relative
abundances indicated that more differences of bacterial
community composition were observed between each
site at the genus level (Fig. 6).

Functional profiles of the bacterial community

The results of PICRUSt program based on the KEGG
classification showed that the predominant predicted
bacterial functions were those related to, metabolism,
genetic information processing, environmental informa-
tion processing, human diseases and organismal systems
(Fig. 7). Due to the importance of water quality for hu-
man health, we further targeted bacterial functional clas-
ses related to human diseases. We found that predicated
functions were related to six kinds of diseases,

cardiovascular, infectious, immune, metabolic, neurode-
generative, and cancer (Fig. 7). Involvement with infec-
tious diseases was the most dominant (Fig. 7).

Linking bacterial community to environmental
parameters

To assess the correlation of community structure with en-
vironmental parameters, we performed a redundancy ana-
lysis (RDA) biplot of the BCC of 88 sites and 11
physicochemical parameters (temp, pH, TN, DTN, NH,,
NO, , NO;'N, TP, DTP, PO,*, and CODy,,,) (Fig. 8). The
plot demonstrated that CODy;,, and NH," played a signifi-
cant role in the spatial changes of bacterial communities
of the rivers (Monte Carlo test P < 0.05). The first RDA di-
mension explained 8.9 % of the variation of bacterial com-
munities, and the second explained 5.4 %.

Discussion

Dominant taxa groups in the BCC in the rivers
Bacteroidetes, Proteobacteria and Actinobacteria were
the most abundant phyla in the rivers around the
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Fig. 3 Non-metric multi-dimensional scaling (NMDS) plot based on the UniFrac weighted distance calculated from read numbers among the 88

Chaohu Lake, China. The sum of the average relative
abundances of these three phylum exceeded 95 % of the
total community. Among them, Bacteroidetes occupied
51.6 %. These bacteria play key role in the degradation
of protein, cellulose, pectin and chitin, which are typical
components of the high molecular mass fraction of dis-
solved organic matter [7, 21, 22]. The high abundance of
Bacteroidetes in the rivers may be related to the organic
matter contamination and algal blooms from the study
area [18, 23]. Previous study in the Tama River also
showed that the soaring numbers of Bacteroidetes may
be related to cyanobacterial blooms [7] and river

pollution levels [24]. In terms of genera, Flavobacterium
was the most dominant one (45.6 % among bacteria) in
this group (Fig. 2), which has been related to harmful
algal blooms because of its algicidal activity and an-
tagonism to other bacteria [25]. Previous study also
indicated that Flavobacterium was often found in
high abundance in eutrophic and hypertrophic urban
rivers [26].

Proteobacteria was another predominant phylum, with
Gammaproteobacteria, Betaproteobacteria, and Alpha-
proteobacteria predominating in all samples. Proteobac-
teria is the largest phylum of bacteria, and is involved in
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Fig. 4 Profile of bacterial community composition, at the phylum level, in the 88 sites of the rivers around Chaohu Lake
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a variety of biogeochemical processes in aquatic ecosys-
tems [27, 28]. Deep taxonomic analyses revealed that the
genera Acinetobacter, Massilia, and Brevundimonas were
the main components of the Gammaproteobacteria,
Betaproteobacteria, and Alphaproteobacteria respect-
ively, accounting for 8.8%,4.6 and 2.6 % of all reads.
Examination of the scientific literature showed they are
the opportunistic pathogens and infectious [14, 18, 29].
In this study, the high abundance of Acinetobacter, Mas-
silia, Brevundimonas may be related to failure in sewage
treatment processes that may be reflected in the high
concentration of TN+ TP and CODy,, of the river water
environment. Previous studies also showed that the oc-
currence of pathogenic bacteria in river following failure

in sewage treatment processes may increase near large
urban populations [30, 31].

Actinobacteria was the third dominant phylum in our
study. Actinobacteria are widely distributed and are the
most abundant phylum in freshwater ecosystems [32,
33]. Deep taxonomic analyses showed that the main
component of the Actinobacteria was the genus “unclas-
sified Micrococcaceae”, which accounted for 88.1% of
the relative abundance. In total, 1.4 % of them were “un-
classified Micrococcaceae within the family Micrococca-
ceae”. This finding is of special local note, and may
reflect a particular local food. In the processing of dry-
fermented sausages, Micrococcaceae are the crucial mi-
croorganisms used as starter cultures, and are used in

rRNA database

Fig. 6 Heatmap profile showing 50 representative, predominant, 16 S rRNA gene-based sequences, classified at the genus level, using the Silva




Shao et al. BMC Microbiology (2021) 21:179

Page 7 of 11

Organismal Systems

Sensory System

Nervous System

Immune System
Excretory System
Environmental Adaptation
Endocrine System [J]
Digestive System
Circulatory System

Xenobiotics Biodegradation and Metabolism
Nucleotide Metabolism [ ]
Metabolism of Terpenoids and Polyketides [ ]
Metabolism of Other Amino Acids [ ]
Metabolism of Cofactors and Vitamins [T ]

Metabolism Lipid N

Glycan Biosynthesis and Metabolism
Enzyme Families

Energy Metabolism

Carbohydrate Metabolism

Biosynthesis of Other Secondary Metabolites
Amino Acid Metabolism

Human Diseases

Neurodegenerative Diseases
Metabolic Diseases
Infectious Diseases

Immune System Diseases
Cardiovascular Diseases
Cancers

Genetic Information Processing

Translation

Transcription

Replication and Repair

Folding, Sorting and Degradation

Signal Transduction

Environmental Information Processing ~ Signaling Molecules and Interaction
Membrane Transport

Cellular Processes

grouped into level-2 functional categories

Transport and Catabolism
Cell Motility

Cell Growth and Death
Cell Communication

Fig. 7 The relative abundance of predicted functions of bacterial communities in the rivers around Chaohu Lake, calculated using PICRUSt2

T T T T 1
4 6 8 10 12

11 'IUJL “

Relative abundance

the preservation of meat products that avoid rancidness
and develop the typical red colour owing to catalase and
nitrate reductase [34]. The Chaohu Lake lies in the An-
hui Province of China, where preserved bacon is local
speciality food [35].

Functional profiles of bacteria in the rivers
Understanding the functional profiles of bacterial com-
munities is of great importance because it may shed light
on ecosystem processes and community assembly mech-
anisms [1]. In our present study, functional profiles
using PICRUSt revealed that the bacteria in the rivers of
the Chaohu lake were involved in many diverse path-
ways (Fig. 4), most of which were related to metabolism
systems, genetic information processing and environ-
mental information processing. In addition, a consider-
able group of bacteria were involved in human diseases,
including infectious, neurogenerative, metabolic, im-
mune system, cardiovascular diseases and cancer.
Among these, the most dominant was involvement in in-
fectious diseases. This finding is consistent with previous
finding in the Apies River, in South Africa [36].

The occurrence, and increase of bacteria associated
with human diseases in river water may be related to the
release of effluent from wastewater treatment plants, in-
effective septic tank systems, and storm water runoff
[37]. Although human pathogenic bacteria often occur

at low levels in the environment [38], the pollutants that
enter these systems may settle into the bottom sedi-
ments, and pathogenic bacteria will gradually increase in
numbers, and finally increase the risk of infections to
humans and animals [36]. Therefore, effective govern-
ance of untreated sewage in an urban river is of para-
mount importance.

Response of the community structure of river bacteria to

CODpw, and NH,*

We found that there were significant differences in bac-
terial community composition among the 88 sites in the
rivers (Figs. 3 and 6). This agrees with other findings
that there is variation largely in the taxonomic compos-
ition and spatial distribution of freshwater bacterial
community among different rivers [39-43]. Our RDA
results revealed that COD,,, and NH," were the most
significant determining factors related to the variances
in the river bacterial community around the Chaohu
Lake. These may relate strongly to the significant varia-
tions of CODy;, and NH," concentrations at different
rivers. A correlation between COD,, and NH," and
bacterial community structure has been reported previ-
ously. In a 2008 study, Wei et al. found that bacterial
community structures in Chaohu Lake were influenced
significantly by the influent CODyy, [9]. Previous studies
in China have also revealed that COD,;,, was
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significantly related to the bacterial composition diver-
sity in an urban river [44], and CODyy, and NH," were
significant structuring factors for bacterial community
compositions in an urban lake [45].

Conclusions

In summary, using Illumina miseq sequencing, we ex-
plored bacterial community diversity, composition and
functional profiles of 88 sites in the rivers around
Chaohu Lake, China. The results showed that Bacteroi-
detes, Proteobacteria and Actinobacteria were the domin-
ant phyla, and dominant genera included Flavobacterium,
Acinetobacter, Massilia, Psychrobacter, Chryseobacterium,
Brevundimonas, Pseudomonas, Duganella, and Unidentified
Micrococcaceae. The functional profiles of the bacterial
populations revealed an association with many human
diseases, including infectious diseases. We also found
site differences in the bacterial community structure in
river water, CODy, and NH," were the main drivers
regulating these variations. Our results indicated that
the discharge of sewage without adequate treatment into
the rivers around the Chaohu Lake owing to widespread
occurrence of pathogenic bacteria (Acinetobacter, Massilia,

Brevundimonas), and these bacteria could be more effective
bioindicators for long-term sewage monitoring in eutrophic
lakes. Therefore, the capacity of sewage treatment needs to
be substantially strengthened around the Chaohu water-
shed to protect Chaohu Lake from further contamination.

Methods

Study area and sampling

Chaohu Lake (31°25'- 31°43'N, 117°16’- 117°51'E), is
located in the center of Anhui Province, China, and in
the downstream of the Yangtze River. The lake has a
surface area of 760 km? and can be divided into two re-
gions, from the Zhongmiao Temple to Qitouzui Cape
(Fig. 9), the western region is eutrophic to hypertrophic,
and the eastern region is mesotrophic. The western re-
gion receives major inflows, including the Nanfei and
Shiwuli rivers (both have sewage outfalls), the Hangbu,
and the Pai river. These western rivers account for al-
most 60 % of the total runoff volume contributed annu-
ally to the lake. The eastern region connectes to the
Yuxi river, which is the only channel connecting the
eastern region to Yangtze River, permitting water ex-
change [18, 46].
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On 15 February 2018 we carried out our field work at
88 sites of the rivers around the Lake Chaohu basin
(Fig. 9). At each sites, surface water (top 50 cm) was col-
lected with a 5 L Schindler sampler. For 16 S rRNA gene
analysis, a subsample of water (500 mL) was pre-filtered
in situ with polycarbonate membrane (0.2 um pore-size
and 47 mm diameter, Millipore) using a hand-driven
vacuum pump. These filters were frozen at -80 °C until
DNA extraction was performed. For enumeration of
bacterial abundance, an additional subsample (46 mL)
was transferred into an autoclaved tube containing 4 mL
of prefiltered (pore size, 0.2 pum) glutaraldehyde (final
concentration 2% [v/v]). These samples were then
stored in a refrigerator at 4 °C, until slides were pre-
pared for enumeration of bacterial abundance. The
remaining water samples were transported to the labora-
tory in dark cooling boxes, and processed 3-5 h after
sampling within 4 h for immediate chemical analysis.

Measurement of environmental parameters and bacterial
abundance

Water temperature (Temp) and pH were measured in
situ using a multi-parameter water quality sonde (YSI
6600V2, Yellow Springs Instruments, USA). Chemical
analyses of water samples for nine parameters (total ni-
trogen (TN), dissolved total nitrogen (DTN), ammonium
(NH,"), nitrate (NOj3"), nitrite (NO,"), total phosphorus
(TP), dissolved total phosphorus (DTP), orthophosphate
(PO47), and chemical oxygen demand (CODyy,) were
conducted in the laboratory according to standard

methods. The abundance of bacteria in the water sam-
ples was determined by the 4,6'-diamidino-2-phenylin-
dole (DAPI)-combined epifluorescence direct counting
method [47].

DNA extraction, PCR amplification and lllumina Miseq
sequencing

The total DNA was extracted using proteinase K, sodium
dodecyl sulfate, and cetyltrimethyl ammonium bromide,
follow by phenol-chloroform extraction and isopropanol
precipitation [48]. Crude DNA extracts were then purified
by the E.Z.N.A° cycle-Pure kit (Omega Bio-Tek).

The V4-V5 regions of the 16 S rRNA genes were ampli-
fied using the primers 515 F (GTGCCAGCMGCCGCGG
TAA) and 907R (CCGTCAATTCMTTTRAGTTT). Poly-
merase chain reaction (PCR) amplification was performed
in a 25 pL reaction mixture containing 5 puL of 5 x PCR
buffer, 1 uL of each primer (10 umol L™ " each), 20 ng pL~*
DNA template, and 0.25 pL of Tag polymerase (5 U pL™";
Fermentas). The PCR cycling was performed in a thermo-
cycler (Applied Biosystems Veriti Thermal Cycler) under
the following conditions: 98 °C for 2 min, 28 cycles each at
98 °C for 15 s, 55 °C for 30 s and 72 °C for 30 s; with final
extension at 72 °C for 5 min. Sequencing service was per-
formed by an [llumina Miseq platform at Personal Biotech-
nology Co., Ltd (Shanghai, China).

Sequencing data processing

Sequence reads were processed by the Quantitative In-
sights Into Microbial Ecology (QIIME) v. 1.9.1 pipeline
[49]. After quality controlling, bacterial phylotypes were
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assigned to operational taxonomic units (OTUs, 97 %
cutoff) using the Uclust algorithm [50]. The longest se-
quence in each cluster was chosen as the representative
sequence, which were annotated by the Silva rRNA data-
base project (SILVA VERSION SSU11; http://www.arb-
silva.de/).

Predictive metagenome analysis

The metagenome functional content was predicted using
the Phylogenetic Investigation of Communities by Re-
construction of Unobserved States (PICRUSt) software
package (version 2.0.0, https://github.com/picrust/
picrust2/wiki) [51]. PICRUSt2-compatible OTU tables
were made using the closed-reference OTU picking
protocol in QIIME against the RDP database. The near-
est sequenced taxon index was used as a measure to rep-
resent the novelty of bacteria within an OTU table, in
respect of previous sequenced genomes. The obtained
OTU table was normalized as the true abundance, and
applied predict_metagemones.py with default settings to
obtain the predicted metagenomics table with Kyoto
Encyclopedia of Genes.

Statistical analysis

Bacterial alpha-diversity was processed using the QIIME
pipeline. Community differences between sites were visu-
alized by non-metric multidimensional scaling (NMDS)
that was performed using the R statistical program [52].
Heat maps of the most abundant bacterial genera were an-
alyzed using a “pheatmap” package in the R environment.
Correlations between environmental variables and bacter-
ial communities were measured with ordination methods
using the vegan package in the R environment.
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