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Empirical evidence of widespread 
exaggeration bias and selective  
reporting in ecology

Kaitlin Kimmel    1,2, Meghan L. Avolio2 & Paul J. Ferraro    3,4 

In many scientific disciplines, common research practices have led to 
unreliable and exaggerated evidence about scientific phenomena. Here we 
describe some of these practices and quantify their pervasiveness in recent 
ecology publications in five popular journals. In an analysis of over 350 studies  
published between 2018 and 2020, we detect empirical evidence of 
exaggeration bias and selective reporting of statistically significant results. 
This evidence implies that the published effect sizes in ecology journals 
exaggerate the importance of the ecological relationships that they aim 
to quantify. An exaggerated evidence base hinders the ability of empirical 
ecology to reliably contribute to science, policy, and management. To 
increase the credibility of ecology research, we describe a set of actions that 
ecologists should take, including changes to scientific norms about what 
high-quality ecology looks like and expectations about what high-quality 
studies can deliver.

Like all scientific disciplines, ecology advances, in part, through the gen-
eration of credible empirical evidence. Ecologists rely on this empirical 
evidence in their efforts to understand how the natural world works 
and to inform policy and management decisions. For example, models  
of climate change could drastically over- or under-predict how much 
carbon is sequestered by terrestrial plants without accurate estimates 
of effect sizes and the uncertainty about these estimates. Likewise, 
based on published studies, land managers may implement an inter-
vention that promises to have relatively large effects, whereas the  
true effect is small or in the opposite direction.

Concerns about whether scientists have the correct incentives 
to generate credible empirical evidence have been raised in a wide 
range of scientific fields1, including ecology2–4. These concerns revolve 
around common research practices and the professional incentives 
that encourage them. These practices, such as the selective reporting 
of results that are expected to impress reviewers and editors, under-
mine the credibility of empirical ecological science and have been 
connected to low rates of replicable findings in other fields5–9. A recent 
survey asked ecologists (N = 494) and evolutionary biologists (N = 313) 

to self-report their use of such ‘questionable research practices’10. 
Nearly two-thirds of respondents admitted to selective reporting at 
some point in their career, and more than half admitted to reporting 
an unexpected finding as though it had been hypothesized before con-
ducting the study (hypothesizing after results are known or HARKing). 
These responses, however, do not necessarily show that these research 
practices are prevalent in recent ecology publications or that they have 
affected the empirical results reported in those publications.

Here we report empirical analyses that indicate the prevalence of 
research practices that undermine the credibility of results in recent 
ecology publications. Our focus in these analyses is on widespread 
research practices that can impact the credibility and replicability of 
ecological science rather than on the precise meanings of ‘credibility’ 
or ‘replicability’ in ecology, which has been explored in other publi-
cations11–13. We hope that empirical evidence for these undesirable 
research practices in popular ecology journals may make ecologists 
take the problems they cause, and their solutions, more seriously.

We have three aims. First, we seek to provide a primer for new 
scientists and a refresher for experienced scientists on practices that 
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will be low. If, however, the study is under-powered, rejecting the null 
hypothesis would be unlikely because the variability of the estimated 
effect sizes around the true effect will be large. Thus, under-powered 
designs lead to greater prevalence of type-2 errors.

To estimate the statistical power of studies in our data, we followed 
the methods in ref. 15. First, we calculated an estimate for the magni-
tude of the true effect sizes that our collection of studies attempts 
to estimate. We estimated this effect as the weighted average of the 
partial correlation coefficients (PCCs) for all estimates in our study. 
A PCC is a measure of the strength and direction of the relationship 
between two variables when the influence of all other variables is held 
constant. Like a meta-analysis, this weighted average gives more weight 
to studies with more precise estimates. Our estimated ‘true effect’ for 
our collection of studies was a PCC value of 0.06. Implicitly, we assume 
that there is no selective reporting or publication bias against small 
effect size estimates in the literature (that is, we assume ecologists 
report in the final publication everything that they estimated). Then 
we calculated the statistical power of the studies to detect this effect 
size (see ‘Power analysis’ for details). This approach does not imply 
that ecological effect sizes are homogenous across sites, studies or 
variables in our 354 studies. Rather, the approach offers an approxima-
tion of the magnitude of the true effect size that a typical ecological 
study would expect to find.

Based on this approach, most tests in our collection of studies 
were under-powered at the conventional 0.80 threshold (Fig. 1a). The 
median power for a test was 13.4%. Only 13.2% of all tests were powered 
at the 0.80 threshold or above. At a 0.60 threshold, 17.6% of all tests 
were adequately powered. Our results for a broad set of ecological 
studies are similar to those found in subfields of ecology16–18 and in 
other disciplines7,9,19. To conclude the opposite—that the study designs 
are well powered—requires one to assume, among other assumptions, 
that ecologists have accurate expectations about the true effect sizes 
they seek to estimate in each study context and adjust their designs in 
a way that leads to less precise estimates when the true effect sizes are 
large (see ‘Power analysis’ for details). These expectations may exist, 
but in our collection of 354 published studies, only one mentioned 
performing power analyses, a finding that is similar to one reported 
in conservation biology where less than 10% of studies reported  
statistical power20.

Whether our approach yields an accurate approximation of the 
statistical power of a typical ecology study also depends on another 
assumption. We assume that ecologists care about distinguishing small 
effect sizes from 0 (for example, PCC values less than our calculated 
weighted PCC of 0.06). Ecologists may, however, not be interested 
in small effect sizes. In fact, the sample sizes needed to distinguish 
these small effect sizes may be unattainable in single studies. If the 
assumption that ecologists are interested in distinguishing from 0 
the typically small effect sizes reported in the literature is incorrect, 
we have underestimated power in our analysis above.

Given that there is no single effect size that all ecological studies  
can expect or in which all ecologists would be interested, we also esti-
mated power over a range of potential ‘true effect sizes’. This range 
of PCC values includes the weighted mean of observational studies 
(0.05) in our sample, the unweighted median of effect sizes (0.15) in 
our sample and the weighted mean of experimental studies (0.19) in 
our sample (see Supplementary Fig. 1 for distribution of effect sizes  
in our dataset). If we were to assume that the true effect in which  
ecologists are interested is large (PCC = 0.2), over half of all estimates 
are under-powered. For even larger effects (PCC = 0.3), over a quarter 
of estimates are under-powered (Fig. 1b).

Exaggeration bias
The prevalence of under-powered study designs can lead to an 
exaggeration bias9,21 in published studies when statistically significant 
results are preferred over non-significant results by editors, reviewers 

lead to low credibility of published results. We focus on practices 
that can be empirically detected via analyses of published articles. 
Second, we quantify the extent to which these practices are prevalent 
in ecology publications. Specifically, (a) we assess, through the lens of 
statistical power, the degree to which ecologists use empirical designs 
that provide unreliable estimates of ecological relationships and the 
extent to which the magnitudes of published effect sizes are exagger-
ated, (b) we assess the degree to which ecologists selectively report 
statistically significant results (which can exacerbate the problem of 
exaggerated effect sizes) and (c) we assess the prevalence of multiple 
hypothesis testing without corrections for multiple comparisons 
(which can exacerbate selective reporting and exaggerated effect 
sizes). Our third and final aim is to summarize a set of solutions that 
authors, editors, reviewers, research institutions and funders can adopt 
to prevent and mitigate the harms of practices that can undermine the 
credibility of ecological science.

To determine the extent to which these practices are prevalent in 
the ecology literature, we collected data from empirical studies pub-
lished between January 2018 and May 2020 in five popular journals that 
publish general-interest ecology studies and include many empirical  
designs: Ecology, Ecology Letters, Journal of Ecology, Nature, and  
Science. We believe that these journals are representative of good quality  
ecological studies, and thus we assume that the exclusion of other 
journals does not bias our conclusions. We included only empirical 
articles that reported statistically estimated parameters and errors in 
tables in the main or supplemental texts. Simulation, modelling and 
meta-analysis articles were excluded. Because most statistical tests 
can be presented in table format and we have no reason to assume that 
certain tests or types of test are more frequently reported in tables, 
we assume that including only estimates presented in tables does not 
bias our results. For every study, we then recorded: (1) every estimate 
and its associated error, (2) the sample size, (3) whether the study used 
multiple hypothesis testing, (4) whether there were corrections for 
multiple hypothesis testing and (5) whether data and code for analyses 
were available.

Overall, we collected data from 354 studies that reported 18,917 
effect sizes and standard errors. For detailed methods, see Methods. 
Our dataset and code are available at https://osf.io/9yd2b.

Practices that lead to low credibility
Under-powered designs
The amount of information that ecologists can extract from their data 
depends on the variability of their data, the magnitude of the relation-
ships they seek to estimate and the precision with which they seek to 
estimate those relationships. When ecological data are highly variable 
and sample sizes are small relative to the true effect sizes, the estimated 
effect sizes are unreliable (that is, the variability of the estimated effect 
sizes around the true effect will be large).

Given that most ecologists have training in frequentist statistics 
and engage in hypothesis testing, we explore the reliability of the esti-
mated effects sizes in the ecology literature through the lens of statisti-
cal power. The statistical power of a test is the chance of detecting an 
effect, if such an effect exists14. Statistical power is based on the antici-
pated effect size, the sample size, the type-1 error rate and the sample 
variability. A conventional threshold for sufficient statistical power 
is 0.80, meaning that, if an effect of a given magnitude exists, a study 
design will detect it 80% of the time. Ecologists often seek to estimate 
the relationship between two variables and test whether the estimated 
value is different from a null hypothesis, which is usually that there 
is no relationship between the two variables. Consider, for example,  
a study that looks at how plant growth is related to phosphorus  
addition. A null hypothesis could be that phosphorus addition has no 
effect on plant growth. If a study is adequately powered, one would 
be likely to reject this null hypothesis if it were in fact false because 
the variability of the estimated effect sizes around the true effect size 
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and authors (that is, publication bias22). Previous studies have reported 
evidence of publication biases in ecology2–4,23, and these biases may be 
more severe in high-impact journals such as the ones we include in our 
study24. To illustrate how exaggeration bias arises, we consider again 
the example of a study that seeks to estimate the effect of phosphorus 
addition on plant growth. Assume that the true treatment effect is a 2% 
increase in aboveground biomass. In adequately powered studies, most 
estimated effects would be close to the 2% increase. In under-powered 
studies, however, the estimated values would vary widely around 2%, 
such that researchers are likely to report values that are much larger 
than the true value (type-M error) or even opposite in sign (type-S 
error)21. Yet, in under-powered studies, only the values with exagger-
ated magnitudes are going to be statistically significant (that is, with 
confidence intervals that exclude 0).

Previous research21 reports that serious exaggeration problems 
arise when power is less than 50% (with power less than 10%, seri-
ous problems with estimates of the wrong sign also arise). If enough 
under-powered studies were published, researchers would be able to 
conduct a meta-analysis using the wide range of estimates to calculate 
a more accurate overall effect size22,25. However, where there is publi-
cation bias against results that do not pass conventional thresholds 
of statistical significance or have unexpected signs9,19,26, mostly the 
large effect sizes with expected signs end up being published. Thus, 
the published effect sizes that scientists see are likely exaggerated in 
magnitude.

Following the methods of refs. 7 and 15, we quantified the exag-
geration bias of under-powered estimates by comparing reported 
effects to an average ‘true effect’ of adequately powered estimates (see 
‘Exaggeration bias’ for more details). As we did for the analysis of power, 
we also present the exaggeration bias results for a range of potential 
magnitudes of true effect sizes that ecologists may seek to estimate.

Our analysis implies that 63% of the estimates in under-powered 
studies are exaggerated over the true effect size by a factor of 2 or more 
(Fig. 2a). Even if we assume a ‘true effect’ of much greater magnitude,  
1 in 4 estimates would still be exaggerated by a factor of 2 or more  
(Fig. 2b). Our results are similar to a recent study of effect size  
exaggeration in three types of experimental ecological field study. 
Using a different methodology, this study found that estimates were 
exaggerated by anywhere from 0.66 times (drought experiments) to 
3.29 times (warming experiments) on average17.

In a field where results often have real-world applications, magni-
tudes matter. In much of the literature on ‘replication’ and ‘reproduci
bility’, the emphasis tends to be on identifying and reducing false 
positives (for example, refs. 9,27). In our view, a more important, but 
often overlooked, problem lies in the potential for exaggeration bias 
in the magnitudes of reported effect sizes. This bias results from a mix 
of the designs that researchers use and the incentives they face in try-
ing to publish their results (see next section on selective reporting).

Based on our empirical results, we are not asserting that most of 
the ecological relationships reported in the literature are likely to be 
spurious—in fact, we doubt ecologists are studying relationships for 
which the sharp null hypothesis of zero effect is widely true. Instead, 
we are asserting that the magnitude of these relationships is inflated. In 
other words, we are asserting that we have indirect empirical evidence—
‘fingerprints’, if you will—that the published effect sizes in ecology 
journals exaggerate the importance of many ecological relationships.

In our study, we use the concept of statistical power simply as a 
vehicle to illustrate the inconvenient truth about ecological data: the 
outcome variables are noisy, the target effect sizes are typically smaller 
than ecologists expect and, given the designs ecologists are using and 
the incentives they are facing, the estimated parameters in the litera-
ture are likely to be unreliable and exaggerated. Our use of statistical 
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Fig. 1 | Percentage of statistical tests that meet and do not meet the 
conventional 0.8 threshold for statistical power. a, A histogram of the 
standard error of the PCCs from ecological studies. All estimates to the right of 

the red line are under-powered at an 80% power threshold. n = 18,917 estimates 
from 354 studies. b, The percentage of the 18,917 estimates that would be under-
powered for a range of PCC values.
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power to explore the reliability of estimated effects in the ecological 
literature is not an endorsement of null hypothesis statistical testing 
or the use of binary decision rules based on P values to decide when an 
estimate is ecologically relevant (for example, P < 0.05)27–32.

Selective reporting of results
Because of publication biases in favour of statistically significant 
results4,26,32, researchers may seek to find and publish such results over 
those that are statistically insignificant33,34. To obtain statistically sig-
nificant results, researchers may choose methodologies or exclude 
data based on whether the choices yield statistically significant results. 
Researchers may also decide to stop collecting data based on when 
results are statistically significant8,10. Such choices are more likely when 
they can transform ‘marginally nonsignificant’ results into statisti-
cally significant results (for example, ‘P hacking’). These choices may 
not be conscious and, when each is viewed in isolation, may be justifi-
able. Yet, the potential for these selective reporting practices to be 
widespread makes it difficult for readers to determine the credibility 
of a given analysis35. Selective reporting is found in most scientific 
disciplines36. Indeed, a recent survey of ecologist and evolutionary 
biologists reported that many researchers engaged, at least once in 
their careers, in selective reporting, such as not reporting response 
variables that did not reach a statistical significance threshold10. While 
some selective reporting practices may seem more malicious than  
others, all may exacerbate the reliability and exaggeration issues raised 
in the previous sections.

To explore the extent of selective reporting of statistically sig-
nificant results in ecology, we followed the methods in ref. 33. We plot-
ted the density of reported t-statistics and overlaid an Epanechnikov 

density kernel. We then weighted estimates by the number of estimates 
per table in each article (see ‘Selective reporting’ for more details). 
Without selective reporting, the density kernel should be a smooth 
function that declines as t values increase. In contrast, a dip in the kernel 
density that creates a bimodal distribution with a second peak before 
the traditional 1.96 cut-off value for significance (that is, P = 0.05) 
implies the presence of selective reporting practices (not all selec-
tive reporting practices lead to a bimodal distribution37, and thus its 
absence does not necessarily imply an absence of selective reporting 
practices).

When we focus on the results reported in the main article (as 
opposed to the supplemental material), the distribution of t-statistics 
has a bimodal distribution with fewer-than-expected t-statistics 
reported right before the traditional cut-off of 1.96 (Fig. 3a). Yet when 
examining just the results presented in the supplemental text, we 
found no unusual distribution of t-statistics (Fig. 3b). After combin-
ing all the results from the main text and supplemental materials, we 
again observe an unusual dip in the distribution of t-statistics (Fig. 3c).

We hypothesize that this pattern of test statistics may arise from 
three sources. First, a researcher may pose a hypothesis that X influ-
ences Y and then use data on X and its covariates to test the hypothesis. 
The researcher may try multiple model specifications and statistical 
tests and then choose the combination that yields the most compelling 
results about the effect of X on Y to include in the main text, relegating 
the less compelling results to the supplemental material. Second, the 
same researcher may be unable to reject the null hypothesis that X  
has no effect on Y with any model or test. They then may search for 
other interesting and statistically significant effects in the data to 
report and revise the hypothesis they claim to be testing in the main 
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Fig. 2 | The percentage of under-powered estimates from ecological studies 
that are exaggerated. a, The percentage of estimates from under-powered 
studies that are exaggerated based on the weighted averages of adequately 
powered estimates in our sample of studies. Deflation refers to any estimate that 

is smaller than the hypothesized true effect, while the other categories represent 
exaggeration. n = 16,407 estimates from 330 studies with under-powered 
estimates. b, The percentage of the 16,407 estimates that would be exaggerated 
by 100% or more given a range of WAAP values.
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text (HARKing). The researcher may still present all the tests that they 
conducted but place the nonsignificant results in the supplement 
instead of the main text. Third, rather than test a single hypothesis, 
ecology researchers often posit research questions in the form ‘what 
determines Y?’ Such studies yield a range of estimated parameters, at 
least one estimate for each posited determinant of Y and maybe more 
if the researcher uses a variety of plausible models. The researcher 
may then selectively pick the ‘most interesting’ estimates to report in 
the main text or, if they report all of the estimates, they may selectively 
pick the estimates from the ‘best’ model (‘best’ could be determined by 
statistical criteria but may also be determined by criteria that maximize 
the probability of publication, such as ‘how many statistically signifi-
cant variables are obtained’ or ‘what understudied variables deliver 
statistically significant results’). The perceived ‘less interesting’ esti-
mates or ‘inferior’ models are relegated to the supplemental materials.

We cannot formally test these hypotheses with our data, but the 
responses from a recent survey of ecologists are consistent with our 
hypotheses10. Over 50% of the respondents self-reported that they did not 
report some variables in their analyses, did not report all the statistical  
tests they ran or switched analysis strategies after seeing the results. 

Over one-third of ecologists admitted to collecting more data after 
checking to see if their initial results were statistically significant or to 
not reporting covariates if they failed to reach a significance threshold. 
Given that these responses are self-reported, they may underestimate 
the prevalence of these practices in ecology. They do, however, provide 
some evidence for why we see the bimodal distribution of t-statistics 
in Fig. 3a. The lack of this bimodal distribution in Fig. 3b, however, sug-
gests that ecologists may be reporting their nonsignificant results, even 
if only in the supplemental materials. However, if authors are changing 
their hypotheses based on the results they report in the main text (that 
is, HARKing), the presence of nonsignificant results in the supplemental 
materials provides little comfort about the credibility of the ecological 
evidence base (recall that over 50% of respondents in the survey by  
ref. 10 self-reported HARKing in previous studies).

Multiple hypothesis testing
Opportunities for selective reporting grow when researchers engage 
in multiple hypothesis testing, where the same data are used to answer 
multiple research questions. The practice includes testing the effects of 
one cause on multiple outcomes, testing the effect of multiple causes 
on one outcome or testing heterogeneity of effects across sub-groups 
within the data. As more hypothesis tests are done on a given dataset, 
the likelihood of ‘false discoveries’ increases simply because the error 
rate associated with a single hypothesis test does not account for a 
series (or family) of tests38–40. For example, a study that looks at the 
impact of phosphorus on total growth of the entire plant community 
along with growth of grass, legume and forb species separately is test-
ing multiple hypotheses.

In frequentist statistics, there are many procedures that allow 
researchers to present all of their hypothesis tests and to adjust their 
inferences when multiple hypotheses are tested, for example, refs. 39–41;  
other procedures exist for the Bayesian context, for example, ref. 42. 
However, application of these procedures is challenging because of 
debates about when the procedures are necessary and how best to 
execute them43–45. Furthermore, adjusting inferences for multiple 
hypotheses comes with the trade-off of decreasing statistical power46, 
which, as we showed above, is already low in ecology. Yet, without a full 
reporting of all tests that the authors performed and a justification 
for adjusting or not adjusting inferences based on that family of tests, 
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the credibility of the results reported in ecology publications cannot 
be fully appreciated.

To shed light on the potential effects of multiple hypothesis testing 
on the ecological literature, we calculated the percentage of studies in 
our dataset that used multiple hypothesis testing and the percentage 
that used corrections for multiple hypothesis testing. Most studies 
in our dataset tested multiple hypotheses (85.0%), but very few used 
corrections (14% of those that tested multiple hypotheses; Fig. 4). 
While correcting for multiple tests may not always be necessary (for 
example, refs. 41–43), reporting why corrections were or were not used 
is necessary for readers to make judgements about the credibility of 
the analyses.

Together with selective reporting (for which we presented evi-
dence in the previous section) and publication bias, multiple hypothesis  
testing may skew how researchers interpret the evidence base47. 
Researchers may be incentivized to report only ‘interesting’ and 
statistically significant results instead of all the tests they performed  
on the dataset. Thus, we may not even know the extent to which  
multiple hypothesis testing occurs because some results may be  
simply excluded from publications.

Fostering a credibility culture in empirical 
ecology
Strengthening the reliability of ecological evidence will require changes 
in how ecologists produce and consume research. Ecologists must  
change their expectations about what high-quality ecological  
studies should look like and their expectations about what high-quality 
ecological studies can deliver. While these expectations can be shaped 
through better statistical knowledge48,49, knowledge alone will be  
insufficient.

Changing expectations about what high-quality studies look like 
and can deliver will require changes in the incentives that ecologists 
face and in the norms that guide their empirical work. To encourage 
these changes across scientific fields, scholars have proposed a range 
of actions, including actions that individual researchers can take and 
actions that researchers must implement collectively1. A few publica-
tions describe some of these actions and some of the challenges to 
scaling these actions in the context of ecology10,14,50–53. We believe 
that most ecologists would readily adopt these actions but are not yet 
aware of them.

To help foster greater awareness, we highlight in Table 1 some 
promising actions that we believe will best contribute to improving the 
credibility and reliability of empirical ecology. Some of these actions, 
such as pre-registration and registered reports, are not well known in 
ecology. More widely known is the importance of data and code avail-
ability for computational reproducibility54,55 (a study is computation-
ally reproducible if the same results can be achieved with the data and 
code used for the original analyses12,13). Best practices have been laid 
out for data and code archiving in ecology56–60, and several journals 
(for example, Journal of Ecology and Ecological Society of America 
publications (https://www.esa.org/publications/data-policy/)) and 
institutions (for example, the National Science Foundation-funded 
Long-Term Ecological Research network) require public data archiving. 
Yet, despite these attempts to make data and code more accessible 
(for example, ref. 61), obtaining data and code can still be challeng-
ing59,62–67. For example, researchers were only able to obtain data from 
19 of 74 articles in wildlife management. Using the data from these  
19 publications, the researchers could reproduce the results in only  
6 publications, even though code was provided for 9 studies55. There-
fore, availability does not equate to quality of data or code60; most 

Table 1 | Changes in research practices to help increase the reliability of ecological research

Recommendation Details Purpose References

Checklists Used at multiple stages of the publication 
process: for example, they can be used 
before submitting, during review and by 
editors

– �Ensure researchers include necessary information 
for evaluating the study

– Highlight key features of study design for reviewers
– Educate authors and reviewers on best practices

Nosek et al.1; Simmons et al.35; 
Parker et al.14,81

Data and code 
archiving

Publicly available except where data privacy 
is necessary

– �Increase the transparency of study workflows and 
conclusions

– �Facilitate computational reproducibility and 
evidence synthesis

Parker et al.14; Culina et al.59;  
Munafò et al.82; Nosek et al.83; 
Nakagawa & Parker84

Pre-registration 
and pre-analysis 
plans

Pre-analysis plans: describe the research 
questions, the design and the methods that 
will be used in a study; completed before 
data analysis begins (ideally, before all 
data have been collected). Pre-registration: 
process of registering, before the study or 
data analysis begins, a researcher’s intent  
to undertake a study and the study’s 
pre-analysis plan

– �Help authors to be transparent in their research 
decisions

– �Reduce, or at least make more transparent, the 
practices of HARKing, selective reporting of results 
and presentations of exploratory analyses as if 
they were confirmatory analyses planned from the 
outset

– �Help scholars quantify the ‘file drawer’ problem: 
studies that were completed but never published

Parker et al.52; Forstmeier et al.47; 
Kaplan & Irvin85; Nosek et al.86

Registered reports Two-stage peer review. Before data 
collection and analysis, authors submit study 
motivation, design and methods. Reviewers 
judge submission based on quality of 
question and design. Second-stage reviews 
assess how closely study follows original plan

– Reduce selective reporting of results
– �Reviewers focus on importance of the question and 

quality of the design, not the sign, magnitude and 
statistical significance of results

https://www.cos.io/initiatives/
registered-reports Allen & Mehler87; 
Scheel et al.88; Nosek et al.89;  
Button et al.90; Soderberg et al.91

Results—blind 
reviews

Full manuscript submitted for review, but 
results are not included

– �Reviewers focus on importance of the question and 
quality of the design, not the sign, magnitude and 
statistical significance of results

– �No mechanism to reduce selective reporting 
because no pre-analysis plan is required

Button et al.90; Smulders92

Incentives Institutions that matter—namely, employers, 
funders and publishers—move away from 
incentivizing ‘exciting’ results and towards 
incentivizing best practices

– �Align personal values of many researchers to create 
and disseminate credible science

– �Value replication studies along with 
‘ground-breaking’ research

Nosek et al.1; O’Dea et al.50; 
Anderson et al.93. http://sortee.org
https://sfdora.org/

See Supplementary Text ‘Promising actions …’ for more details on practices.

http://www.nature.com/natecolevol
https://www.esa.org/publications/data-policy/
https://www.cos.io/initiatives/registered-reports
https://www.cos.io/initiatives/registered-reports
http://sortee.org
https://sfdora.org/
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ecology and evolution publicly available datasets in a recent analysis 
were not reusable (a measure of ease with which data can be reused 
by third parties), and only slightly over half were complete65. In our 
dataset of 354 studies, we found that most studies (78.5%) did make the 
data available, but only 18% of studies provided code for their analysis  
(and the code provided did not necessarily show the data cleaning 
steps; Fig. 5). These percentages are similar to those reported using 
a sample of 346 articles from ecology journals that had mandatory 
or encouraged code-sharing policies. In that study, 79% of studies 
provided data, 27% provided code and 21% had both data and code59.

Even with broader implementation of actions such as 
pre-registration and the provision of both data and analysis code, many 
important decisions will remain in the hands of researchers and thus 
unobservable to outsiders. Thus, to fully address the issues raised in 
our article, we need a cultural shift, a shift where we assign more value 
to important questions and best practices and less value to exciting 
stories and statistically significant results50,68. Given the complexity of 
ecological systems, we should not expect high-quality empirical studies 
to provide ‘airtight’ conclusions or discontinuous jumps in our under-
standing of ecological processes. Instead, we should expect single 
studies to incrementally build on previous studies, to have substantial 
uncertainty arising from many sources (not just sampling variability) 
and to even present conflicting inferences, implying that we do not 
fully understand the underlying ecological processes.

One important step in the direction of a cultural shift is the recently 
created Society for Open, Reliable, and Transparent Ecology and  
Evolutionary biology (SORTEE: http://sortee.org). SORTEE aims to 
bring about cultural and institutional changes that can improve reli-
ability and transparency in ecology, evolutionary biology and related 
fields. The more the practices that SORTEE promotes are taught to new 
scientists, reinforced by senior researchers and institutionalized by 
journals, funders and departments, the more reliable ecology research 
will be in the future.

We acknowledge that this cultural shift will not be swift because 
it requires structural changes in the incentives and norms in academia 
and other research settings. Yet, the continued scientific and policy 
relevance of ecology depends on our collective action to change these 
incentives and norms as soon as possible.

Methods
Data collection
Our methods follow those of ref. 7. We collected data from articles 
published between January 2018 and May 2020 in five popular journals  

for ecology publications. We collected data from every empirical article  
in three ecology journals (Ecology, Ecology Letters and Journal of  
Ecology) and every empirical ecology article in two general-interest 
journals (Nature and Science) (n = 1,568 papers total). Only empirical  
articles that statistically estimated parameters from data were 
included. These articles needed to have reported estimates and errors 
(standard errors or 95% confidence intervals) in tables either in the 
main text or in supplemental materials. We focused on results reported 
in tables so that estimates and associated errors were easy to identify 
by the research team and to make sure that we were able to collect 
enough estimates for our analyses. Simulation or modelling articles 
were excluded. Meta-analyses were also excluded because we sought 
primary empirical data and did not want to double count any estimates 
that were found in both an original study and a meta-analysis.

Two people looked at every article to make sure that it fit our 
criteria. K.K. initially pulled ecology subject papers from Nature and 
Science because these are for general audiences and publish on a wide 
range of topics. Papers were automatically excluded if they did not 
include tables. Those papers that did include tables were categorized 
into those that were empirical and those that were not.

We then recorded: (1) every estimate and its associated error,  
(2) the sample size, (3) whether the study used multiple hypothesis test-
ing, (4) whether there were corrections for multiple hypothesis testing 
and (5) whether data and code for analyses in the study were available.

From the 1,568 papers in the five journals between our target years, 
we excluded 1,038 that did not report statistical tests in tables. We 
excluded 136 that were either meta-analyses or not empirical. Fifteen 
papers were removed that did not report errors and another three were 
removed that reported 0 for a standard error. One paper was removed 
because it was duplicated in 2019, and one was removed because the 
supplemental materials where tables may have been located did not 
open. Seventeen complete papers were removed because we could  
not discern sample sizes for any of the tests. When checking our  
sampled data, one paper was removed because it should not have been 
classified as an ecology topic from Science. During data processing, we 
removed one publication that had over 6,000 estimates, and one was 
removed when we discarded the top percentile of t-statistics. Thus, 
our final sample size was 354 publications.

When confidence intervals were reported instead of standard 
errors, we calculated the upper confidence interval minus the esti-
mate and the lower confidence interval minus the estimate. We then 
recorded the smaller of the two if the interval was uneven. Thus, we 
are assuming less error about an estimate and potentially biasing our 
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results towards a more favourable assessment of the literature than is 
warranted. These values were divided by 1.96 to obtain an equivalent 
standard error. Our use of 1.96 may not be correct for small sample 
sizes, but assuming that 1.96 is the benchmark will attribute less error 
about the point estimate. Thus, we will be overestimating the power 
of the tests. In other words, it makes our estimates of power more 
conservative.

When sample sizes were not directly reported in the tables, we 
inferred the sample size from the methods. If we could not determine 
the sample size based on information given in the tables and methods, 
we made note that the sample size was unclear and dropped these 
papers from our analyses (n = 5,412 estimates from 29 publications).

To determine if a study used multiple hypothesis testing, we read 
the methods and looked at results presented in the main text of the 
manuscript. We categorized a study as using multiple hypothesis test-
ing if the authors investigated multiple outcomes (dependent vari-
ables) associated with one cause (independent variable), investigated 
multiple causes (independent variables) associated with one outcome 
(dependent variables) or investigated sub-groups within their dataset. 
We were not concerned with one multiple regression being run (which 
could fall under multiple causes associated with one outcome) but 
instead several multiple regressions being run on the same dataset. 
We tried not to include robustness checks as multiple hypothesis test-
ing. We identified robustness checks by reading how the analysis was 
referenced and, where possible, by reading figure or table captions. 
In most cases, robustness checks were easily identified—but the text 
was not always clear.

Furthermore, to determine if there were corrections done, we 
did a keyword search for the following phrases: false discovery rate, 
family-wise error rate, Benjamini–Hochberg, Benjamini–Yekutieli, 
Bonferroni, Sidak, Dunn–Sidak, Holm, Hochberg, per-comparison 
error rate and Dunnett’s test.

We also categorized each study as experimental or observational 
and each results table as presenting ‘main’ or ‘non-main’ results, as in 
refs. 7,33. ‘Main’ results were tables that were explicitly mentioned 
in the results text or figure legends. ‘Non-main’ results were all other 
tables—usually those which were only reported in the methods or 
supplemental sections.

Software used
All data manipulation were done in R version 4.0.069, and we utilized the 
‘here’ package (version 1.0.1) for replicability70. Throughout our script, 
we used dplyr (version 1.0.7)71 and tidyr (version 1.1.4)72 to manipulate 
our data. We also relied on ggplot2 (version 3.3.5)73, ggpubr (version  
0.4.0)74, patchwork (version 1.1.1)75 and scales (version 1.1.1)76 for  
making figures.

Data cleaning
Before the analyses, we cleaned and trimmed our data. First, we 
dropped 5,484 estimates from 34 studies where we could not deter-
mine the sample size for the analyses presented in tables. Then, we 
removed all estimates with a standard error of 0 (n = 810 estimates) 
and all coefficients that were not reported as integers (n = 7 estimates).

We ‘derounded’ our estimates and standard errors, as in ref. 33, 
to account for differences in how test statistics were rounded when 
reported. To deround, we picked a random value from the uniform 
distribution with the range of where n is the reported value and x is 
the number of decimal places in the original value. For example, if 
the original estimate was 0.007, we picked a value from the range of 
[0.0065, 0.0075) using a random draw from the uniform distribution 
in this interval.

We then calculated t-stats based on the derounded estimates and 
their standard errors. The top percentile of the absolute value of the 
t-stats was then trimmed from the data (n = 257). This trimming ensures 
that a few data points do not disproportionately distort our estimate 

of power. We also excluded a study with more than 6,600 estimates 
(~26% of our total data before removal) so that our results would not 
be skewed by this one study. Our final sample size comprised 18,909 
estimates from 353 unique publications.

Power analysis
To estimate the statistical power of studies in our dataset and the extent 
of exaggeration bias, we followed the methods in ref. 15. Power calcula-
tions are conditional on some assumption of the size of the effect that 
the researchers are seeking to estimate. Here we expressed power in 
the form of the minimum detectable effect (MDE). The MDE of a study 
design is the smallest effect that, if true, has an X% chance of producing 
an impact estimate that is statistically significant at the Y% level77. X is 
the level of statistical power (denoted as (1 − β) and commonly set to 
80%), and Y is the type-1 error rate (denoted as α and commonly set to 
5%). The MDE can be written in terms of the standard error78:

MDE = (t1− α
2
+ t1−β) ε (1)

where t1− α
2
 is the t-distribution with 1 − α

2
 degrees of freedom, t1−β is the 

t-distribution with 1 − β degrees of freedom and ε is the standard error 
of the estimated effect. Using conventional values of α = 0.05 and 
β = 20% for power of 80%) in equation (1) yields:

MDE = (1.96 + 0.84) ε = 2.8ε (2)

Thus, when the standard error of an estimate is less than or equal 
to the MDE divided by 2.8, the test is adequately powered at the 80% 
threshold.

To calculate the MDE across our sample of studies, we must  
convert the estimates to a unitless measure with a common scale. This 
conversion allows us to compare estimates across studies. Here we used 
the PCC, calculated as79:

PCC = t
√t + d.f.

(3)

where t is the associated t-statistic of the estimate and d.f. is the degrees 
of freedom. The standard error of the PCC was then estimated using79:

SEpcc = PCC
t = 1

√t2 + d.f.
(4)

Using the absolute values of PCC, we calculated the weighted 
average PCC for our entire dataset. The PCC values were weighted by 
the estimates’ precision (for example, the standard error about the 
estimate), so that estimates with higher precision (smaller standard 
errors) were assigned a larger weight. This weighted average PCC value 
served as our estimate of the true effect (the MDE in equation (2)) that 
ecological studies are attempting to estimate. We then divided the 
weighted average of the PCC values by 2.8 to get the threshold to which 
we compared the SEpcc values. When the SEpcc of an estimate was 
less than or equal to the threshold, the estimate had adequate power; 
otherwise, it was under-powered. We repeated these analyses for 75% 
and 60% power also where the weighted PCC was divided by 2.63 and 
2.21, respectively, to obtain the threshold values. See lines 110–142 in 
RepCode.R for how these analyses were done.

Most published studies did not provide the information required 
to calculate the degrees of freedom (d.f.) for each model. To be consist-
ent across studies, we approximate d.f. using the sample size, N. Thus, 
we are often overestimating the d.f. of a model, even more so when the 
estimates come from a mixed effects model (42% of the estimates in our 
dataset are from some sort of mixed effects model). Therefore, most of 
our calculated PCC values are smaller than they would be if we used d.f. 
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Because we are using N, we are also likely underestimating the standard 
error of the PCC values (which are smaller to a greater degree than the 
PCC values are smaller). This will reduce our standard error of the PCC 
values which we compare to the MDE threshold. Thus, overall, we are 
likely overestimating the power of most tests in our sample of studies.

We recognize that each empirical study in ecology seeks to esti-
mate a different effect, whose true value may vary across studies. 
Given that the true effect size is not known, we also explored how our  
conclusions changed with changes in the assumed true effect size  
(Fig. 1b). For a range of ‘true effect’ values, we computed how many PCC 
estimates had a standard error greater than the threshold value based 
on hypothetical true effect sizes divided by 2.8. Our range went up to 
PCC values of 0.20 (in terms of standard deviations of the outcome 
variable, this effect size would be analogous to an effect size of roughly 
0.5 s.d.). Our estimated weighted PCC value (our MDE in equation (2)) 
from our entire dataset was 0.06. For only observational studies in our 
dataset, it was 0.05. For only experimental studies in our dataset, it was 
0.19. These values make sense if we assume that experimental studies 
tend to push the system further than observational studies and, conse
quently, have larger effects to report. Furthermore, this range spans 
most of the PCC values recorded from our dataset (Supplementary  
Fig. 1) and covers the unweighted median PCC value of our sample. 
Thus, the values we present in Fig. 1b represent a reasonable range of 
PCC values that we may expect in ecological studies.

Because several reviewers of our original manuscript raised con-
cerns about using a single effect size to estimate power, we wanted to 
present the assumptions about the data-generating process to come 
to an opposite conclusion, that is, to conclude that the study designs 
are, in fact, well powered or, more generally, able to easily isolate signal 
from noise.

Step 1: First, recall how we concluded that the typical true effect 
size in ecological studies is small in magnitude. In our data, the smaller  
the estimated effect, the more precise the estimate. Thus, our 
meta-regression estimator, which weights the estimates by their  
precision, yields a relatively small effect size, which we claim serves  
as a benchmark for thinking about the typical true effect size in eco-
logical studies.

Step 2: Let us consider how the conclusion from step 1 could be 
wrong (that is, our conclusion that true effect sizes tend to be small 
and thus most ecological studies are under-powered to detect the true 
effect sizes). One would have to make two assumptions: (1) ecologists, 
before designing their studies, think about the true effect sizes they 
are targeting and the underlying sampling variability, and they are 
roughly accurate in their expectations, and (2) ecologists who target 
larger true effect sizes choose designs with relatively smaller sample 
sizes or contexts in which the variance in the outcome measure is 
relatively higher (that is, ecologists who seek to estimate larger effect 
sizes do not maintain the same relative level of precision as those who 
seek to estimate smaller effect sizes). In other words, ecologists are 
adjusting their designs to match the true heterogeneous effect sizes 
that they target and are adjusting their designs in a way that reduces 
the relative precision of the estimate as the true effect size increases  
in magnitude. If those two conditions hold, then our conclusions  
about unreliable estimates could be wrong.

Step 3: Let us consider more deeply the two assumptions required 
to come to the opposite conclusion from the one described in our 
manuscript. Assumption 1 would require that ecologists think very 
carefully about the noise in their data and the magnitude of the tar-
get effect size before collecting data. Although we acknowledge that 
statistical power calculations or simulations are not the only way to 
think about such design attributes, they are likely to be one of the most 
popular ways of doing so among ecologists. Yet if ecologists conduct 
power analyses with regularity, they do not report them in their publi-
cations: only one study of the 353 publications in our dataset reported 
conducting a power analysis.

Even if ecologists do carefully think about the noise in their data 
and the magnitude of the target effect size before collecting data, 
assumption 2 would require one of two additional conditions. First, 
when the expected treatment effect sizes are large, the costs of data 
collection or selecting study units are also large. This pattern of costs 
could imply that, in comparison to ecologists seeking to estimate small 
true effect sizes, ecologists seeking to estimate large effects cannot 
as easily reduce the influence of noise by increasing sample size or by 
selecting a subset of the target population that has lower outcome 
variance. If this first condition about differences in relative costs were 
not satisfied, an alternative condition could support assumption 2. 
In comparison to ecologists who work on studies seeking to estimate 
small effect sizes, ecologists who seek to estimate large true effect sizes 
must be more cognizant that peer reviewers and editors are unlikely to 
care about the precision of their estimates as long as the confidence 
interval does not cross the null hypothesis value.

Lastly, we computed the median power for our sample of tests as in 
ref. 80. The median power is calculated as 1 minus the cumulative nor-
mal probability of the difference between 1.96 and the absolute value 
of the weighted average PCC estimate divided by the median standard 
error. We calculated this value for six sets of the data: the entire dataset, 
the set of ‘main’ estimates, the set of estimates in the main text, the set 
of estimates in the supplemental text, the set of estimates from obser-
vational studies and the set of the estimates from experimental studies 
(see RepCode.R lines 304–333 for these calculations).

Exaggeration bias
We calculated the exaggeration bias as in refs. 7,15. First, we calcu-
late the weighted average of PCC values for the subset of tests that 
are adequately powered. We refer to this value as the weighted aver-
age of the adequately powered estimators (WAAP). The WAAP that  
we calculated for our dataset was 0.05. According to Ioannidis et al.15, 
the WAAP is a conservative benchmark for the ‘true’ effect. To calculate 
how exaggerated estimates from under-powered designs were, we 
calculated the ratio between the absolute value of the PCC for each 
estimate and the WAAP. If this ratio was less than 1, estimates were 
deflated (for example, smaller than expected). If this ratio was greater 
than 1, estimates were inflated. Specifically, we categorized estimates 
that were inflated by 0–100% (ratio greater than or equal to 1, but less 
than 2), by 100–300% (ratio greater than or equal to 2, but less than 4) 
and by 300% or more (ratio greater than or equal to 4).

Again, because we acknowledge that the WAAP estimate may be 
different for different types of study, we then explore how our conclu-
sions may change given different WAAP values (Fig. 2b). For a range of 
WAAP values from 0.01 to 0.2, we calculated how many estimates would 
be inflated by 100% or more. To do this, we compared the WAAP values 
in this range to the absolute value of the PCC values for under-powered 
estimates. Any PCC value divided by the WAAP that was greater than 2 
was considered inflated by 100% or more. See RepCode.R lines 335–417 
for these calculations and creation of figures.

Selective reporting
To explore the extent of selective reporting of statistically significant 
results, we followed the methods in ref. 33. We plotted the density of 
t-statistics and overlaid an Epanechnikov density kernel. Estimates 
were weighted by the number of estimates per table in each article. 
Without selective reporting, the density kernel should be a smooth 
function declining at higher t values. A dip that creates a bimodal 
distribution with a second peak near the 1.96 cut-off for significance 
(that is, P = 0.05) suggests selective reporting.

Multiple hypothesis testing, data and code availability
We calculated the percentage of studies in our dataset that used mul-
tiple hypothesis testing and the percentage that used corrections for 
multiple hypothesis testing (see definitions in ‘Data collection’ section 
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above). To quantify the extent to which the data and analysis code from 
our studies are available for replication, we calculated the percentage 
of studies that made the data or analysis code, or both, available.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Our dataset is available at https://osf.io/9yd2b.

Code availability
Our analysis code is available at https://osf.io/9yd2b.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection All data was collected from manuscripts published between 2018 and 2020 in Science, Nature, Journal of Ecology, Ecology, and Ecology 
Letters. 

Data analysis All data manipulation were done in R version 4.0.0 70, and we utilized the ‘here’ package (version 1.0.1) for replicability. Throughout our 
script, we used dplyr (version 1.0.7) and tidyr (version 1.1.4) to manipulate our data. We also relied on ggplot2 (version 3.3.5), ggpubr (version 
0.4.0), patchwork (version 1.1.1), and scales (version 1.1.1) for making figures. Our code is available at https://osf.io/9yd2b/?
view_only=d3e18f3437bf49289cc5448d9e5a2e36.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Our dataset is available at https://osf.io/9yd2b/?view_only=d3e18f3437bf49289cc5448d9e5a2e36.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender NA

Reporting on race, ethnicity, or 
other socially relevant 
groupings

NA

Population characteristics NA

Recruitment NA

Ethics oversight NA

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We conducted a meta-science study whereby we estimated statistical power, exaggeration bias, and selective reporting from 
estimates reported in published studies. 

Research sample Our sample comprised peer-reviewed empirical ecology manuscripts published between 2018 and 2020 in Science, Nature, Ecology, 
Journal of Ecology, and Ecology Letters. 

Sampling strategy We collected estimates from empirical papers where data were reported in tables. We aimed to get a sample size >15,000 estimates 
so that our analysis would be robust based on a similar paper published in environmental economics.

Data collection Data was recorded from empirical studies that statistically estimated parameters. Means and some measure of error needed to be 
reported. Data were collected by six undergraduate research assistants. 

Timing and spatial scale We collected data from papers published between 2018-2020. 

Data exclusions From the 1,568 papers in the five journals between our target years, we excluded 1,038 that did not report statistical tests in tables. 
We excluded 136 that were either meta-analyses or not empirical. 15 papers were removed that did not report errors and another 3 
were removed that reported 0 for a standard error. One paper was removed because it was duplicated in 2019 and one was 
removed because the supplemental materials where tables may have been located did not work. 17 complete papers were removed 
because we could not discern sample sizes for any of the tests. When checking our sampled data, one paper was removed because it 
should not have been classified as an ecology topic from Science. During data processing, we removed one publication that had over 
6,000 estimates and one was removed when we discarded the top percentile of t-statistics. 

Reproducibility This is not applicable to our study. 

Randomization This is not applicable to our study. 
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Blinding This is not applicable to our study. 

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
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MRI-based neuroimaging
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